
Amazon Recommendation Systems:
Comparison Analysis between Traditional Techniques and Neural Embedding

JeongWoo Ha * 1 2 Se Won Jang * 2 Simon Kim * 2

1. Motivation
Measuring similarities between two different items has been
a focus of active research in the field of Recommender Sys-
tems. Specific designs of collaborative filtering systems dif-
fer greatly between industries and markets, but most of them
share a common structure of Market-Basket Model, in which
we make an assumption that with large volume of data,
we can effectively recommend items based on basket co-
occurrence.

A very common approach among such systems is to perform
graph traversal techniques on a basket-to-item bipartite graph
and generate a set of co-purchased candidates. However, this
method has critical drawbacks to consider. First, graph traver-
sal techniques are very sensitive to traversal hyperparameters.
How far do we drift apart from the starting item? How many
steps do we perform to find the right balance between explo-
ration and exploitation? More importantly, how do we model
the relational information between these items? These are all
common challenges that such graph-traversal based recom-
mender systems face.

2. Related Works
Li[1] suggests a kernel-based recommendation approach that
indirectly inspects customers and items related to user-item
pair to predict whether an edge may exist between them. One
limitation of this design, however, is that it can only work
with nodes that are indirectly connected. To complement for
the limitation, the model in the paper inspects structural com-
monalities of various parts of a network based on the exam-
ination of previous graph kernels. This graphical representa-
tion has been used for training the model on different graphs
to devise a better recommendation system for predictions.

Mikolov et al[2] explore and evaluate a technique to embed
natural language words in d-dimensional vector space, now
commonly known as the word2vec model. The paper pro-
poses multiple techniques to achieve this, which the paper

*Equal contribution 1In CS229 2In CS224W. Correspondence
to: JeongWoo Ha <jwha@stanford.edu>, Se Won Jang <sw-
jang@stanford.edu>, Simon Kim <spkim@stanford.edu>.

describes as the CBOW (Continuous Bag of Words) model
and the Skip-gram model. Although the two methods differ
in the way the neural network is trained, they share the same
philosophy in the sense that the neural network behaves as
a form of autoencoder in which one of its layers, the weight
matrix, represents a concatenation of vector representation of
the natural language vocabulary. More importantly, this pa-
per explores the capability of capturing word analogies. Cer-
tain relational properties between natural language words can
be described as vector operations, such as (Men-Women) -
(King-Queen), which can potentially provide interesting rec-
ommendations that traditional techniques cannot generate.

3. Data
We used the Amazon Product Co-Purchasing Network
metadata provided by SNAP available at http://snap.
stanford.edu/data/amazon-meta.html. This
dataset holds a variety of product purchase metadata of
721,342 items, including product categories, reviews, and ag-
gregated, filtered lists of co-purchased products ranging from
books, music CDs, DVDs, and VHS video tapes. About 72%
of the data is books, 3% are DVDs, 20% are music CDs,
and 5% are videos. The lists of co-purchased products are
not sampled from unique sessions, but is each an aggregation
of co-purchase data across multiple user shopping sessions.
This dataset does not contain any explicit definition of nodes
and edges, and for the purpose of this project we have decided
to generate two independent bipartite graphs.

4. Methods
4.1. Collaborative Filtering (CF)

Collaborative filtering (CF) has been a well-known algorithm
for recommendation system. CF can be divided into two
subcategories: memory-based and model-based CF. For the
memory-based CF, the algorithm draws inferences about the

http://snap.stanford.edu/data/amazon-meta.html
http://snap.stanford.edu/data/amazon-meta.html


Amazon Recommendation Systems: Comparison Analysis between Traditional Techniques and Neural Embedding

relationship between different products based on which ones
are purchased together. We create a ratings matrix where the
rows represent the users and the columns represents the items.
After filling up the matrix R[i][j] with the ratings given by
user i to the item j, we measure the similarity between any
two pairs. Another approach is the model-based collaborative
filtering, which is based on matrix factorization, an unsuper-
vised learning method for latent variable decomposition and
dimensionality reduction. It has advantages with scalability
and sparsity of the matrix compared to the memory-based ap-
proach.

4.1.1. LATENT FACTOR MODEL SVD

The biggest challenge with this model was the size and spar-
sity (R1.5M×400k, sparsity< 0.01%). Also, it is important
to note that the ratings are influenced by latent factors (e.g.
cost, personal preferences, etc.). Thus, we’ve decided map
the user/item features to the latent feature space, and using
root mean squared error (RMSE) to minimize the loss. First,
using SVD, which decomposes the matrix into three different
matricesU , Σ, and V T , whereRm×n, Um×k, Σk×k, V Tk×n,
we train k, the number of latent features. Then, with the given
k, we trainQ = U and PT = ΣV T , using stochastic gradient
descent. To address overfitting and improve the accuracy, we
add regularization and biases for each user/item feature.

min
P,Q

∑
(u,i∈R)

(
rui − qi · pTu

)2

+ λ1
∑
u

‖pu‖2+λ2
∑
i

‖qi‖2

and the SGD will be for each rui

εui = 2(rui − qi · pTu )

qi := qi + µ1(εuipu − 2λ2qi)

pu := pu + µ2(εuiqi − 2λ1pu)

4.2. Random Walk

We have a bipartite graph with item nodes on one side and
the basket nodes on the other. To get the similarities between
two items, it is too costly to iteratively walk through all nodes
exhaustively to find the distance between two items. An alter-
native method to heuristically determine similarity between
two items is to perform random walks on two items and find
the Jaccard similarity between all the item nodes both walks
have landed on.

We have three parameters: α, k, and iterations. α determines
the probability of the current node of the random walk to be
teleported back to the original item; k determines how many
steps to walk from the original node; value of iterations deter-
mines the number of such k steps to take to be summed to a
counter of all the nodes each iteration has finished on. One of
the goals of training this model is to perform hyperparameter
tuning to find the optimal composition of these parameters.

The end of a random walk on each node will create a counter
of nodes it has produced. To heuristically determine the re-
latedness of two items, we performed the length of the in-
tersection of two counters over the length of the union. As
higher values of alpha would teleport the walk back to the
origin node, we were aware that the Jaccard similarity val-
ues of any pair of nodes would be significantly lower as alpha
probability of the final nodes will be the origin node.

4.3. Neural Embeddings Candidate Generation

We explore the effectiveness of Neural Embeddings as a
means of co-purchase candidate generation. More specifi-
cally, given a co-purchase bipartite graph of baskets and items
where each basket holds a flattened representation of multi-
ple user shopping-cart sessions, we analyze the explorative
properties of Neural embeddings learned per item.

To do so, we first extract training data from the given bipartite
graph with which a word2vec model is trained. Then, upon
assigning each item node with its learned high dimensional
vector, we run k nearest neighbors over the entire embeddings
space to generate the top k candidates.

4.3.1. TRAINING DATA GENERATION

Since the product co-purchase information was aggregated
from multiple user sessions, and hence does not capture tem-
poral co-purchase information, our basket-item graph inher-
ently has a low item to item degree distribution. This means
that normal skip-gram word2vec model will not perform well,
due to the lack of training data. This required us to implement
two different train data generation techniques.

First, given a set of co-purchased items for a basket, we
apply binary permutation on the set, acquiring the set
(0, 1), (1, 0), (0, 2), ..., (n, n− 1). The reason that we gener-
ate permutation instead of combination is because no autoen-
coders are guaranteed to be symmetric by nature. This means
that the model may learn to successfully output 1 given 0,
but not the other way round. Second, we applied a differ-
ent technique where for each basket a target item was cho-



Amazon Recommendation Systems: Comparison Analysis between Traditional Techniques and Neural Embedding

sen. This is a direct reflection of the property of our dataset,
where each co-purchase list was generated for a specific item.
Given a target item, and a set of co-purchased items, we gen-
erate bi-directional tuples between the target item and each
co-purchased item.

4.3.2. MODEL AND CANDIDATE GENERATION

For the neural embeddings model, we have adopted the
word2vec model with noise-contrastive estimation. This is
because the vocabulary size of all Amazon products can be
much larger than that of a natural language vocabulary. Ap-
plying softmax over several hundreds of thousands of multi-
nomial classes can be extremely inefficient. By modifying
the multinomial classification problem into a binomial one
allows us to train the model much faster.

Once we train the object embeddings, we generate recom-
mended candidates by running k-nearest neighbors search
on the 128 dimensional space, in terms of cosine similar-
ity. This is a very expensive process, and will likely be very
hard to push to a real-time serving system without applying
LSH techniques or a large distributed cluster. For the sake of
this project however, we simply normalized the embeddings
matrix so that each row has norm of 1.0, and ran batched
dot product between rows to compute cosine similarities, and
generate top 50 candidates.

5. Results
5.1. Collaborative Filtering

5.1.1. PARAMTER TUNING THROUGH SVD AND SGD

We first use SVD to obtain the value k, which is the number
of latent features, that minimizes the loss between the decom-
posed matrices and the actual ratings matrix. We noticed that
for k > 40, the change in error for all train, dev, and test
dataset was negligible, so we chose k = 50 for the number
of latent features. With this value, we trained the model Q
and PT with SGD that minimizes the loss. The final set of
optimal parameters was k = 50, µ = 0.04, and λ1 = 0.07,
λ2 = 0.12.

5.1.2. DISTANCE AND REACHABILITY METRICS

The results show that the collaborative filtering model has a
high maximum distance and standard deviation. This implies
that the model could potentially recommend items that Ran-
dom Walk model cannot. However, it could also mean that
the CF model is not as accurate as the Neural Embedding or
Random Walk models, especially when the ratings matrix is
very large and sparse. Out of 721342 nodes, only 562 and
703 candidate sets were partially reachable from the query
item, which shows that over 99.9% of all candidate sets had
no reachable nodes from the query node. Thus, this result
shows that the CF model may provide insightful recommen-
dations that Random Walk model can’t easily, yet the size
and sparsity of the given data makes it difficult to always ac-
curately provide appropriate recommendations.

5.1.3. EXAMPLES OF QUALITATIVE ANALYSIS

The table of qualitative analysis shows some good cases of
appropriate recommendations and some bad. From the first
row, we can see that although there are some unrelated ones
such as ’Seabiscuit,’ many of the recommended books are in
the scope of some social issues or historical events that are re-
lated to social movements. Also, it was pleasing to see that for
the second query, the resulting recommendation included al-
most all books related to some sort of guide. However, many
of the recommendations was also very unhelpful like the last
row; this shows the crucial weak point of SVD leveraged CF,
which is that it could provide bad recommendations due to
the significant reduction in the matrix dimension.

5.2. Random Walk

5.2.1. HYPERPARAMETER TUNING

To observe the effects of changing α, weve initially fixed k
to be 10 and performed 100,000 iterations with varying alpha.
The resulting distances of two candidate nodes are as follows.
Note that weve removed pairs with distance 0.



Amazon Recommendation Systems: Comparison Analysis between Traditional Techniques and Neural Embedding

You can see that α sets the boundary random walks can ex-
plore out to. Higher α values prevent the walker from explor-
ing far, and thus the candidates are likely to conservatively
explore closer nodes more than further ones.

To observe the effects of changing k, weve fixed α to be 0.1
and performed 100,000 iterations for each value of k. As k
increases, the runtime cost rises exponentially because each
step increases the number of travelled nodes exponentially.

As k increases, you can see the value approaches 1
α , which

is as expected. Therefore, we can see that k determines how
conservative the model should be within the boundary set by
α. By setting k = 100, we could insure two distant nodes
have a higher chance of being selected as candidates for simi-
lar items, but because we have around 720k nodes the runtime
cost was far too costly for the model to be run with k = 100.
As a result, for the purpose of this paper weve set the value
of k to be 10.

The graph had an average of 2.93 degree in item-to-item rela-
tions. The above tables show the effects of changing different
parameters. As will be discussed below, recommendations
by random-walk are limited to only nodes that are directly
reachable from the origin node. This prevents the recommen-
dation from suggesting items that are not directly connected,
but still are similar. Below, this paper will show why Neural
Embeddings, a non-traditional method, is more successful in
specific cases.

5.2.2. EXAMPLES OF QUALITATIVE ANALYSIS

These qualitative analysis show clearly the strengths and lim-
itations of random walk model. From positive results we can
see it is successful in selecting candidates that are in close
distance from the origin item node. For items with sufficient
neighboring item-item degrees, the random walk can generate
candidates with visible similarities between the pairs.

However, the clustering effect can bring detrimental results to
random walks. If an item has no associated items such that
it is connected to a single basket, and the basket is also con-
nected only to the origin item node, then regardless of how
the random walk is progressed it will not yield significant re-
sults, as seen by the first two negative results. The third neg-
ative result also shows the limitations of random walk. This
is the case where the two books Brittas Empire (Vols. 4-6)
and Brittas Empire (Vols. 1-3) are mutually connected via
single basket, and these two items are the only ones directly
connected. With no teleportation to random nodes, the ran-
dom walks will be trapped in the cluster of these wo items,
and thus apart from recommending one another it will not
yield any significant results, as seen from the top candidates.
This shows that for network with sparse item-item network,
random walk is not the best model to generate similar candi-
dates. This is why this paper suggests Neural Embeddings, as
shown below.

5.3. Neural Embeddings Candidate Generation

5.3.1. DISTANCE AND REACHABILITY METRICS

The evaluation results show that Neural Embeddings trained
from the two training sampling methods are capable of gen-
erating candidates that are unreachable from the query node
on the basket-item graph. Out of 721342 total items, only
1102 and 1728 candidate sets contained candidates that were
reachable from the query item node. There were 0 candidate
set where all of the candidates were reachable from the query
node, and over 99.5% of all candidate sets had absolutely
none of its candidates reachable from the query node. Even
considering the fact that this dataset includes some partial in-
formation (some items are only mentioned in the co-purchase
list), this is an extremely high number. These numbers sug-
gest that using word2vec embeddings and cosine similarity as
the comparator function allows us to capture some complex
information that is invisible from the graph structure. In other
words, it may be capable of encoding proximity and similar-
ity information that cannot be captured by traditional graph
analysis techniques.



Amazon Recommendation Systems: Comparison Analysis between Traditional Techniques and Neural Embedding

Only looking at candidates that were reachable on the graph,
the distribution of candidate distances per position looks quite
uniform throughout the position indices (top 50 candidates),
with average distance around 2.5 ∼ 3.6 and standard devi-
ation of 2.3. There are two interesting things to note from
this data. First, the distance distribution is not uniform across
distances. Second, the distance distribution is quite uniform
across candidate positions, at around 3.5 hops from the query
node. This means that the word2vec model does not com-
pletely ignore the distances between nodes on the graph, but
is in fact capable of capturing the proximity of two items on
the bipartite graph. If the word2vec model had failed to learn
meaningful information, this distribution would have shown
uniform-like distribution (BFS tree depth per node for this
graph can be over 150).

5.3.2. EXAMPLES OF QUALITATIVE ANALYSIS

Its very hard to measure the quality of a recommender system
without a way to measure the online performance. So in this
paper, we provide a few good and bad examples to demon-

strate the type of recommendations that this model makes.
These samples were chosen from top 10 candidate sets in
terms of their distances away from the query item. Here, the
average distance from the query items are between 10 and 20
(10 ∼ 20 random hops away from the query item). We can
say however, that they are well beyond the discovery scope of
traditional graph recommender technique.

5.4. Analysis

Random-walk algorithm is limited for sparse graph struc-
tures, as seen above. It is limited to suggesting candidates
that are directly connected by edges, and also cannot travel to
nodes that are further away in distance yet still may be simi-
lar. Also, it is vulnerable to clustering effects. If a basket only
contains two items, and each of the items is only connected
to one another, the random-walk algorithm will be limited to
suggesting only each other as the most similar candidate and
fail to explore to look at others.

Collaborative filtering is more successful in attempting to
capture similarities of two items that are not necessarily con-
nected, as seen by the results above. However, we can see
that this model is vulnerable to sparse dataset. If the ratings
matrix is too sparse, then even with the SVD the model will
be unsuccessful in capturing meaningful similarities between
two items due to enormous amount of noise that arise.

From the results we can see that the neural embeddings model
is successful in capturing similarities between two items that
are not directly connected to each other. The distance be-
tween the target item and the candidate nodes are signifi-
cantly small enough to suggest meaningful similarities, as
seen by our qualitative analysis of the results. In addition, it
is successful in capturing similarities between partially reach-
able item nodes as well. Therefore, we can conclude that for
dataset with sparse ratings matrix, a significant number of dis-
connected nodes, and clustering effects, neural embeddings
model can perform better than the traditional models.

6. Conclusion
This paper looked into traditional recommender system mod-
els, such as Collaborative Filtering and Random-Walk algo-
rithms. We could see that for sparse datasets, these models
are not successful in capturing similarities of items that are
not directly connected by graph structures. As a result, we
have looked into an alternative to recommender systems -
Neural Embeddings, which we could see is more successful
in capturing embedded similarities between items that are not
directly connected. We believe this paper will be a stepping
stone to providing an alternative model to traditional models.



Amazon Recommendation Systems: Comparison Analysis between Traditional Techniques and Neural Embedding

Acknowledgements
Project TA Lucio Dery has provided some great insights to
improve our CF model. Since our dataset was too big, we
were stuck in terms of how to calculate the similarity matrix
for the ratings. Lucio guided us to look through various opti-
mized CF models to help solve the challenges.

References
[1] Li, X. & Chen, H. (2013). Recommendation as link prediction in
bipartite graphs: A graph kernel-based machine learning approach.
Decision Support Systems, 54(2), 880-890.

[2] Mikolov, Tomas, et al. (2013). Efficient Estimation of Word
Representations in Vector Space. [1301.3781]

[3] Videla-Cavieres, Ivan F., and Sebastian A. Rios. (2014). Ex-
tending market basket analysis with graph mining techniques: A
real case. Expert Systems with Applications, 41(4), 1928-1936.

[4] Gutmann, M. & Hyvarinen, A. (2010). Noise-contrastive es-
timation: A new estimation principle for unnormalized statistical
models. PMLR, 9:297-304.

[5] Zhou, Y., et al. (2008). Large-Scale Parallel Collaborative Fil-
tering for the Netflix Prize. AAIM, 5034:337-348.

Contributions
We all came up together with the methods to tackle the recommender
systems. After many brainstorming sessions and initial tests, we
came up with three different approaches.

JeongWoo Ha worked on the Collaborative Filtering. He parsed the
data and created framework to run various methods of CF. He ran the
initial experiments using PCA to reduce matrix dimensionality. He
also modeled SVD in our dataset and designed SGD methods with
biases for optimization. He discussed potential pitfalls and chal-
lenges with projects TAs. He also contributed in creating testing
classes for the result. He contributed in writing the paper.

Se Won Jang worked on the Neural Embedding part. He designed
the framework for leveraging word2vec model in this setting. He
created the bipartite graph models to analyze the basket-item model
that we are implementing. He also contributed in creating testing
classes for the result. He also contributed in writing the paper.

Simon Kim worked on Random Walk algorithm. He wrote the parser
to organize raw data, and created algorithms for RW. Simon also
worked on the preliminary work on graph traversal to calculate the
distance (similarity) between items. He also contributed in writing
the paper.


